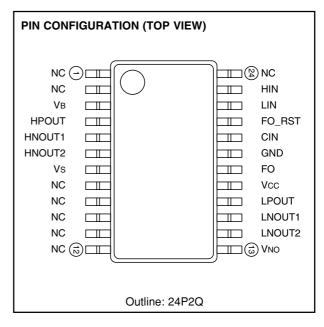
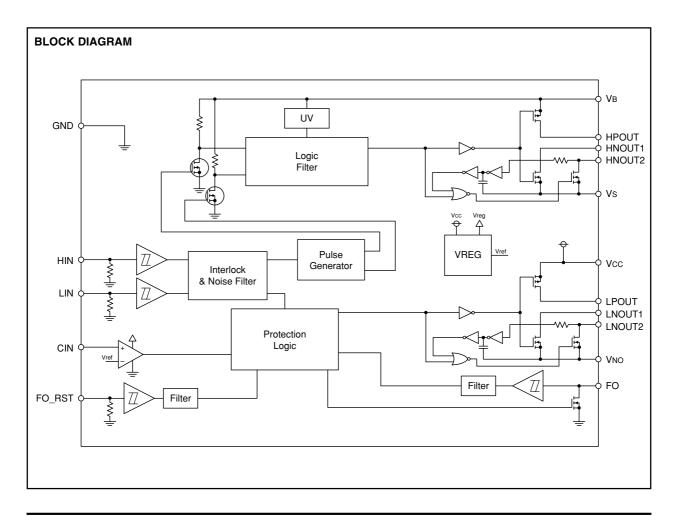
MITSUBISHI SEMICONDUCTORS <HVIC> M81019FP

1200V HIGH VOLTAGE HALF BRIDGE DRIVER

DESCRIPTION


M81019FP is high voltage Power MOSFET and IGBT gate driver for half bridge applications.


FEATURES

- Floating supply voltage up to 1200V
- Low quiescent power supply current
- \bullet Separate sink and source current output up to $\pm 1 \text{A}$ (typ)
- \bullet Active Miller effect clamp NMOS with sink current up to $-1A\,(typ)$
- Input noise filters
- Over-current detection and output shutdown
- High side under voltage lockout
- FO pin which can input and output Fault signals to communicate with controllers and synchronize the shut down with other phases
- Pb-free
- 24-Lead SSOP package

APPLICATIONS

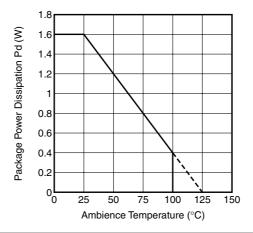
Power MOSFET and IGBT gate driver for Medium and Micro inverter or general purpose.

1200V HIGH VOLTAGE HALF BRIDGE DRIVER

ABSOLUTE MAXIMUM RATINGS

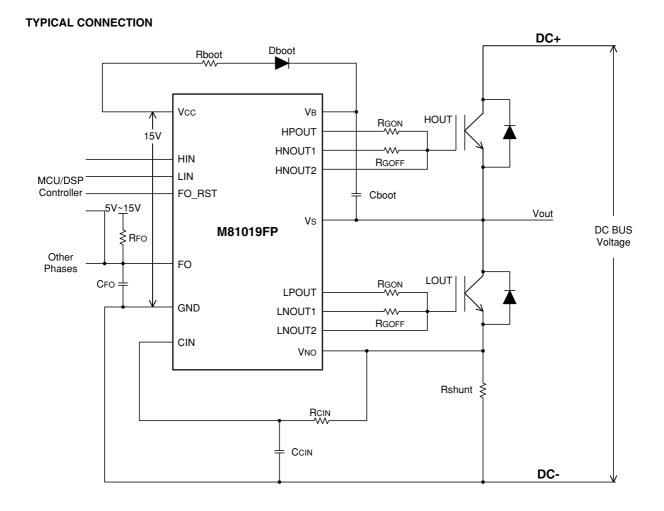
Absolute maximum ratings indicate limitation beyond which destruction of device may occur. All voltage parameters are absolute voltage reference to GND unless otherwise specified.

Symbol	Parameter	Test conditions	Ratings	Unit
Vв	High side floating supply absolute voltage		-0.5 ~ 1224	V
Vs	High side floating supply offset voltage		VB-24 ~ VB+0.5	V
VBS	High side floating supply voltage	VBS = VB-VS	-0.5 ~ 24	V
Vно	High side output voltage		Vs-0.5 ~ VB+0.5	V
Vcc	Low side fixed supply voltage		-0.5 ~ 24	V
VNO	Power ground		Vcc-24 ~ Vcc+0.5	V
Vlo	Low side output voltage		VNO-0.5 ~ VCC+0.5	V
VIN	Logic input voltage	HIN, LIN, FO_RST	-0.5 ~ Vcc+0.5	V
Vfo	FO input/output voltage		-0.5 ~ Vcc+0.5	V
VCIN	CIN input voltage		-0.5 ~ Vcc+0.5	V
dVs/dt	Allowable offset voltage slew rate		±50	V/ns
Pd	Package power dissipation	Ta = 25°C, On PCB	1.6	W
Kθ	Linear derating factor	Ta > 25°C, On PCB	16	mW/°C
Rth(j-c)	Junction-case thermal resistance		60	°C/W
Tj	Junction temperature		-40 ~ 125	°C
Topr	Operation temperature		-40 ~ 100	°C
Tstg	Storage temperature		-40 ~ 125	°C


RECOMMENDED OPERATING CONDITIONS

For proper operation the device should be used within the recommended conditions. All voltage parameters are absolute voltages referenced to GND unless otherwise specified.

Symbol		-		Limits			
	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
Vв	High side floating supply absolute voltage		Vs+13.5	Vs+15	Vs+20	V	
Vs	High side floating supply offset voltage	VBS > 13.5V	-5	—	900	V	
VBS	High side floating supply voltage	VBS = VB-VS	13.5	15	20	V	
Vно	High side output voltage		Vs	_	Vs+20	V	
Vcc	Low side fixed supply voltage		13.5	—	20	V	
VNO	Power ground		-0.5	_	5	V	
Vlo	Low side output voltage		VNO	_	Vcc	V	
VIN	Logic input voltage	HIN, LIN, FO_RST	0	5	Vcc	V	
VFO	FO input/output voltage		0	_	Vcc	V	
VCIN	CIN input voltage		0	_	5	V	


Note : For proper operation, the device should be used within the recommend conditions.

THERMAL DERATING FACTOR CHARACTERISTIC

1200V HIGH VOLTAGE HALF BRIDGE DRIVER

Note: If HVIC is working in high noise environment, it is recommended to connect a 1nF ceramic capacitor (CFO) to FO pin.

1200V HIGH VOLTAGE HALF BRIDGE DRIVER

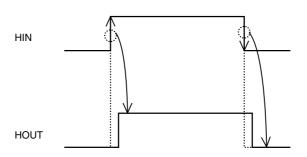
ELECTRICAL CHARACTERISTICS (Ta=25°C, Vcc=VBs (=VB-Vs)=15V, unless otherwise specified)

Symbol IFS IBS ICC VOH VOL	Parameter High side leakage current VBS quiescent supply current	Test conditions VB = VS = 1200V	Min.	Тур.	Max.	Unit
lвs lcc Voн	VBS quiescent supply current					1
Icc Voн			_	—	1.0	μA
Vон	Voo guiegeent europly europt	HIN = LIN = 0V	_	0.5	0.8	mA
	VCC quiescent supply current	HIN = LIN = 0V	—	1	1.5	mA
Vol	High level output voltage	IO = –20mA, HPOUT, LPOUT	14.5	—	—	V
	Low level output voltage	IO = 20mA, HNOUT1, LNOUT1	_	—	0.5	V
Vih	High level input threshold voltage	HIN, LIN, FO_RST	4.0	—		V
VIL	Low level input threshold voltage	HIN, LIN, FO_RST	_	—	0.6	V
Ін	High level input bias current	VIN = 5V	0.6	1	1.4	mA
lı∟	Low level input bias current	VIN = 0V	-0.01	0	0.01	mA
tFilter	Input signals filter time	HIN, LIN, FO_RST, FO	80	200	500	ns
Vhno2	High side active Miller clamp NMOS	VIN = 0V	2.0	3.4	5	v
V HINO2	input threshold voltage	VIN = 0 V	2.0			
Vlno2	Low side active Miller clamp NMOS	VIN = 0V	6.0	7.6	9	v
V LINO2	input threshold voltage		0.0	7.0	9	v
tVNO2	Active Miller clamp NMOS filter time	VIN = 0V	_	400	_	ns
Volfo	Low level FO output voltage	IFO = 1mA	_	0.4	0.95	V
Vihfo	High level FO input threshold voltage		4.0	_	_	V
Vilfo	Low level FO input threshold voltage		_	_	0.6	V
VBSuvr	VBS supply UV reset voltage		10.5	11.3	12.1	V
VBSuvt	VBS supply UV trip voltage		10	10.8	11.6	V
VBSuvh	VBS supply UV hysteresis voltage	VBSuvh = VBSuvr–VBSuvt	0.2	0.5	0.8	V
tVBSuv	VBS supply UV filter time		4	8	16	μs
VCIN	CIN trip voltage		0.4	0.5	0.6	V
VPOR	POR trip voltage		4	5.5	7.5	V
Іон	Output high level short circuit pulsed current	HPOUT (LPOUT) = 0V, HIN = 5V, PW < 5µs	_	1	_	Α
IOL1	Output low level short circuit pulsed current	HNOUT1 (LNOUT1) = 15V, LIN = 5V, PW < 5µs	_	-1	_	Α
	Active Miller clamp NMOS output	HNOUT2 (LNOUT2) = 15V, LIN = 5V,				_
IOL2	low level short circuit pulsed current	PW < 5μs	_	-1	_	A
Roн	Output high level on resistance	іо = –1А, Rон = (Vон–Vo) /lo	_	15	_	Ω
Rol1	Output low level on resistance	IO = 1A, ROL1 = VO/IO	_	15	_	Ω
	Active Miller clamp NMOS output					
Rol2	low level on resistance $IO = 1A, ROL2 = VO/IO$		_	15	_	Ω
tdLH(HO)	High side turn-on propagation delay	HPOUT short to HNOUT1 and HNOUT2, CL = 1nF	1	1.27	1.8	μs
tdHL(HO)	High side turn-off propagation delay	HPOUT short to HNOUT1 and HNOUT2, CL = 1nF	0.9	1.21	1.8	μs
tdLH(LO)	Low side turn-on propagation delay	LPOUT short to LNOUT1 and LNOUT2, CL = 1nF	1	1.39	1.9	μs
tdHL(LO)	Low side turn-off propagation delay	LPOUT short to LNOUT1 and LNOUT2, CL = 1nF	0.9	1.19	1.7	μs
tr	Output turn-on rise time	CL = 1nF		40		ns
tf	Output turn-off fall time	CL = 1nF		40		ns
-	Delay matching, high side turn-on	-		_		
∆tdLH	and low side turn-off	tdLH (HO)-tdHL (LO)	—	80	—	ns
∆tdHL	Delay matching, high side turn-off and low side turn-on	tdLH (LO)-tdHL (HO)	_	180		ns

Note: Typ is not specified.

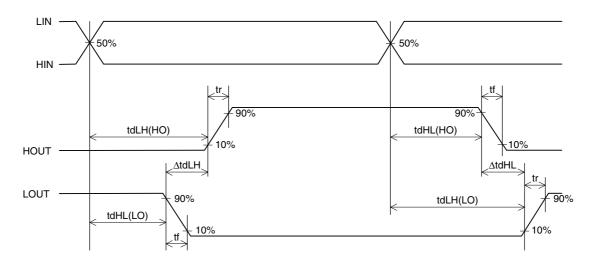
1200V HIGH VOLTAGE HALF BRIDGE DRIVER

FUNCTION TABLE (Q: Keep previous status)										
HIN	LIN	FO_RST	CIN	FO (Input)	VBS/UV	Vcc/POR	HOUT	LOUT	FO (Output)	Behavioral status
H→L	L	L	L	-	н	н	L	L	н	
H→L	Н	L	L	Ι	Н	Н	L	Н	Н	
L→H	L	L	L	-	Н	н	Н	L	н	
L→H	Н	L	L	-	Н	н	Q	Q	Н	Interlock active
Х	Н	Х	Н	1	Х	Н	L	L	L	CIN tripping when LIN=H
Х	L	Х	Н	I	Х	Н	Q	Q	Н	CIN not tripping when LIN=L
Х	Х	Х	Х	L	Х	Н	L	L	L	Output shuts down when FO=L
Х	Х	Х	Х	-	Х	L	L	L	Н	Vcc power reset
Х	L	L	L	-	L	Н	L	L	Н	VBS power reset
Х	Н	L	L	-	L	Н	L	Н	Н	VBS power reset is tripping when LIN=H


FUNCTION TABLE (Q: Keep previous status)

Note1 : "L" status of VBS/UV indicates a high side UV condition; "L" status of VCC/POR indicates a VCC power reset condition.

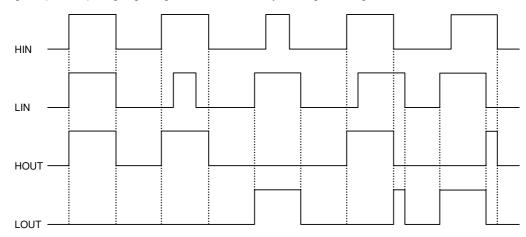
2 : In the case of both input signals (HIN and LIN) are "H", output signals (HOUT and LOUT) keep previous status.


 $3:X \ (HIN):L{\rightarrow}H \ or \ H{\rightarrow}L. \ Other:H \ or \ L.$

4 : Output signal (HOUT) is triggered by the edge of input signal.

FUNCTIONAL DESCRIPTION

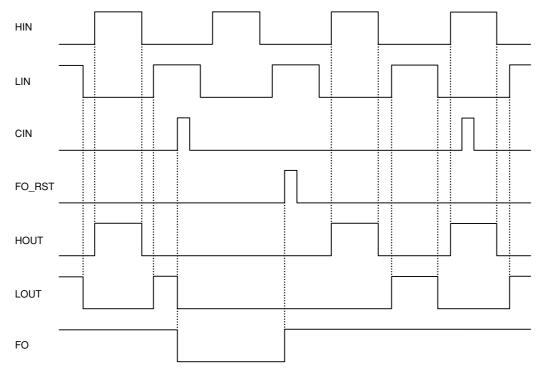
1. INPUT/OUTPUT TIMING DIAGRAM



1200V HIGH VOLTAGE HALF BRIDGE DRIVER

2. INPUT INTERLOCK TIMING DIAGRAM

When the input signals (HIN/LIN) are high level at the same time, the outputs (HOUT/LOUT) keep their previous status. But if signals (HIN/LIN) are going to high level simultaneously, HIN signals will get active and cause HOUT to enter "H" status.

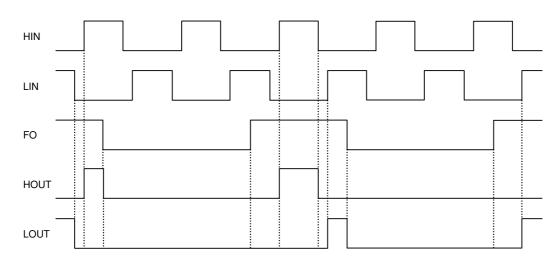

Note1: The minimum input pulse width at HIN/LIN should be to more than 500ns (because of HIN/LIN input noise filter circuit).

Note2: If a high-high status of input signals (HIN/LIN) is ended with only one input signal entering low level and another still being in high level, the output will enter high-low status after the delay match time (not shown in the figure above).

Note3: Delay times between input and output signals are not shown in the figure above.

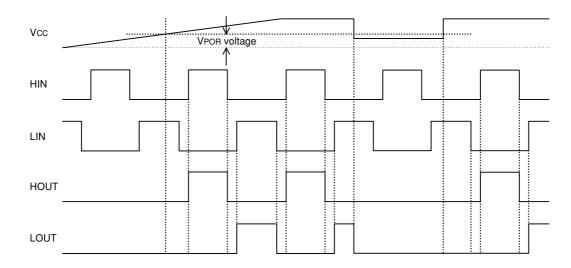
3. SHORT CIRCUIT PROTECTION TIMING DIAGRAM

When an over-current is detected by exceeding the threshold at the CIN and LIN is at high level at the same time, the short circuit protection will get active and shutdown the outputs while FO will issue a low level (indicating a fault signal). The fault output latch is reset by a high level signal at FO_RST pin and then FO will return to high level while the output of the driver will respond to the following active input signal.


Note1 : Delay times between input and output signals are not shown in the figure above. Note2 : The minimum FO_RST pulse width should be more than 500ns (because of FO_RST input filter circuit).

1200V HIGH VOLTAGE HALF BRIDGE DRIVER

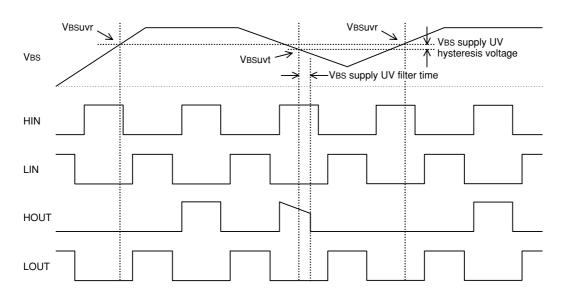
4. FO INPUT TIMING DIAGRAM


When FO is pulled down to low level in case the FO of other phases becomes low level (fault happened) or the MCU/ DSP sets FO to low level, the outputs (HOUT, LOUT) of the driver will be shut down. As soon as FO goes high again, the output will respond to the following active input signal.

Note1: Delay times between input and output signals are not shown in the figure above. Note2: The minimum FO pulse width should be more than 500ns (because of FO input filter circuit).

5. LOW SIDE Vcc SUPPLY POWER RESET SEQUENCE

When the Vcc supply voltage is lower than power reset trip voltage, the power reset gets active and the outputs (HOUT/ LOUT) become "L". As soon as the Vcc supply voltage goes higher than the power reset trip voltage, the outputs will respond to the following active input signals.


Note1: Delay times between input and output signals are not shown in the figure above.

1200V HIGH VOLTAGE HALF BRIDGE DRIVER

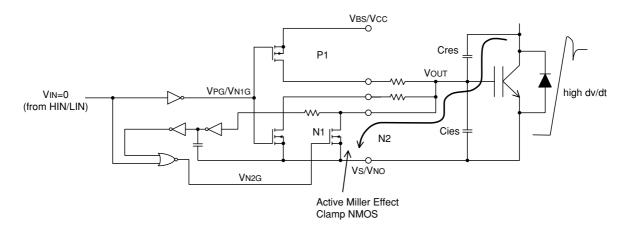
6. HIGH SIDE VBS SUPPLY UNDER VOLTAGE LOCKOUT SEQUENCE

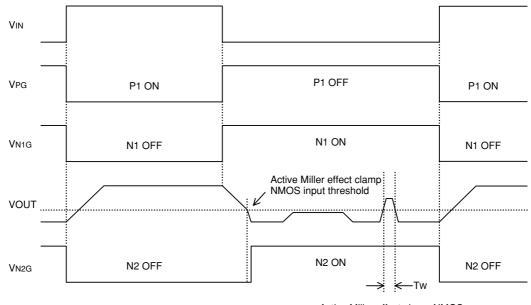
When VBS supply voltage drops below the VBS supply UV trip voltage and the duration in this status exceeds the VBS supply UV filter time, the output of the high side is locked. As soon as the VBS supply voltage rises above the VBS supply UV reset voltage, the output will respond to the following active HIN signal.

Note1: Delay times between input and output signals are not shown in the figure above.

7. POWER START-UP SEQUENCE

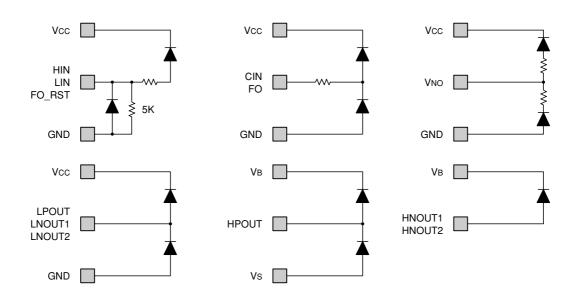
At power supply start-up the following sequence is recommended when bootstrap supply topology is used.


- (1). Apply Vcc.
- (2). Make sure that FO is at high level.
 (3). Set LIN to high level and HIN to low level so that bootstrap capacitor could be charged.
 (4). Set LIN to low level.
 Note: If two power supply are used for supplying Vcc and Vss individually, it is recommended to set Vcc first and then set VBS.
 HIN
 LIN
 LOUT

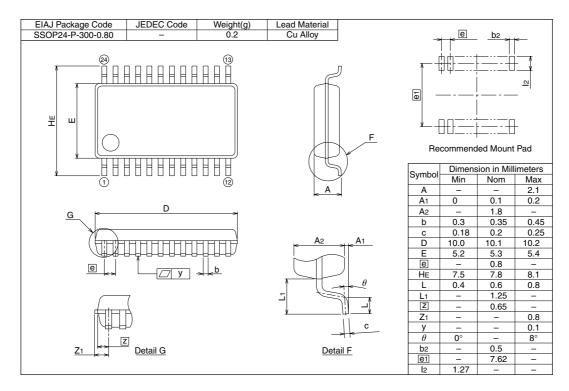

1200V HIGH VOLTAGE HALF BRIDGE DRIVER

8. ACTIVE MILLER EFFECT CLAMP NMOS OUTPUT TIMING DIAGRAM

The structure of the output driver stage is shown in following figure. This circuit structure employs a solution for the problem of the Miller current through Cres in IGBT switching applications. Instead of driving the IGBT gate to a negative voltage to increase the safety margin, this circuit structure uses a NMOS to establish a low impedance path to prevent the self-turn-on due to the parasitic Miller capacitor in power switches.


When HIN/LIN is at low level and the voltage of the VOUT (IGBT gate voltage) is below active Miller effect clamp NMOS input threshold voltage, the active Miller effect clamp NMOS is being turned on and opens a low resistive path for the Miller current through Cres.

Active Miller effect clamp NMOS keeps turn-on if Tw does not exceed active Miller clamp NMOS filter time



1200V HIGH VOLTAGE HALF BRIDGE DRIVER

INTERNAL DIODE CLAMP CIRCUITS FOR INPUT AND OUTPUT PINS

PACKAGE OUTLINE

